If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2=35.5
We move all terms to the left:
a^2-(35.5)=0
We add all the numbers together, and all the variables
a^2-35.5=0
a = 1; b = 0; c = -35.5;
Δ = b2-4ac
Δ = 02-4·1·(-35.5)
Δ = 142
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{142}}{2*1}=\frac{0-\sqrt{142}}{2} =-\frac{\sqrt{}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{142}}{2*1}=\frac{0+\sqrt{142}}{2} =\frac{\sqrt{}}{2} $
| 1/2q+2(q+5)=-4(q(1)+1 | | (3/2)x+-4=13 | | Y=-20+2x | | X+.06x=5 | | 4x-(3x+1)=-11 | | (3+5w+3w²)^6=64 | | x-5x=-36 | | a+4a+5a-12=180 | | 3.6x-4.6=2.6 | | 7x+6x-40=60-7x | | 5(3-3y/2)+4y=13.25 | | 4=x+9÷13 | | 20=30x+30 | | -4x8=-2x+12 | | y=2(4)^-3 | | y=2(4)^-2 | | y=20000(0.95)^10 | | y=20000(0.95)^4 | | y=20000(0.95)^3 | | y=20000(0.95)^2 | | y=20000(0.95)^1 | | y=12841(1.01)^20 | | -4(y+4)=2y-8+6(2y-1) | | y=12841(1.01)^4 | | y=12841(1.01)^3 | | y=12841(1.01)^2 | | 25c-9=0 | | 2=10x-21 | | y=12841(1.04) | | y=12841(1.03) | | y=12841(1.02) | | y=12841(2.01) |